Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13984, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633964

RESUMO

Marine macroalgae are important indicators of healthy nearshore groundwater dependent ecosystems (GDEs), which are emergent global conservation priorities. Submarine groundwater discharge (SGD) supports abundant native algal communities in GDEs via elevated but naturally derived nutrients. GDEs are threatened by anthropogenic nutrient inputs that pollute SGD above ambient levels, favoring invasive algae. Accordingly, this case study draws on the GDE conditions of Kona, Hawai'i where we evaluated daily photosynthetic production and growth for two macroalgae; a culturally valued native (Ulva lactuca) and an invasive (Hypnea musciformis). Manipulative experiments-devised to address future land-use, climate change, and water-use scenarios for Kona-tested algal responses under a natural range of SGD nutrient and salinity levels. Our analyses demonstrate that photosynthesis and growth in U. lactuca are optimal in low-salinity, high-nutrient waters, whereas productivity for H. musciformis appears limited to higher salinities despite elevated nutrient subsidies. These findings suggest that reductions in SGD via climate change decreases in rainfall or increased water-use from the aquifer may relax physiological constraints on H. musciformis. Collectively, this study reveals divergent physiologies of a native and an invasive macroalga to SGD and highlights the importance of maintaining SGD quantity and quality to protect nearshore GDEs.


Assuntos
Asteraceae , Produtos Biológicos , Líquidos Corporais , Água Subterrânea , Alga Marinha , Ecossistema
2.
Mar Pollut Bull ; 171: 112306, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34456034

RESUMO

Pila'a reef on the north shore of Kaua'i, Hawai'i was subjected to a major flood event in 2001 that deposited extensive sediment on the reef flat, resulting in high coral mortality. To document potential recovery, this study replicated benthic and sediment surveys conducted immediately following the event and 15 years later. Coral cores were analyzed to determine coral growth rates and density. Our results suggest that significant reduction in terrigenous sediments has led to partial ecosystem recovery based on coral species and colony increases, more balanced size frequency distributions, improved coral condition, and enhanced coral recruitment despite lack of recovery of large dead coral colonies. However, within this 15-year period, episodic storms and a bleaching event impeded the recovery process, preventing full recovery and continuously threatening the coral reef community. As climate change progresses, the intensity and frequency of these disturbances are predicted to increase.


Assuntos
Antozoários , Recifes de Corais , Animais , Mudança Climática , Ecossistema , Havaí
3.
PeerJ ; 5: e3346, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28560102

RESUMO

Coral reef restoration and management techniques are in ever-increasing demand due to the global decline of coral reefs in the last several decades. Coral relocation has been established as an appropriate restoration technique in select cases, particularly where corals are scheduled for destruction. However, continued long-term monitoring of recovery of transplanted corals is seldom sustained. Removal of coral from a navigation channel and relocation to a similar nearby dredged site occurred in 2005. Coral recovery at the donor site and changes in fish populations at the receiving site were tracked periodically over the following decade. Coral regrowth at the donor site was rapid until a recent bleaching event reduced coral cover by more than half. The transplant of mature colonies increased spatial complexity at the receiving site, immediately increasing fish biomass, abundance, and species that was maintained throughout subsequent surveys. Our research indicates that unlike the majority of historical accounts of coral relocation in the Pacific, corals transplanted into wave-protected areas with similar conditions as the original site can have high survival rates. Data on long-term monitoring of coral transplants in diverse environments is central in developing management and mitigation strategies.

4.
PeerJ ; 5: e3355, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28584703

RESUMO

Drastic increases in global carbon emissions in the past century have led to elevated sea surface temperatures that negatively affect coral reef organisms. Worldwide coral bleaching-related mortality is increasing and data has shown even isolated and protected reefs are vulnerable to the effects of global climate change. In 2014 and 2015, coral reefs in the main Hawaiian Islands (MHI) suffered up to 90% bleaching, with higher than 50% subsequent mortality in some areas. The location and severity of bleaching and mortality was strongly influenced by the spatial and temporal patterns of elevated seawater temperatures. The main objective of this research was to understand the spatial extent of bleaching mortality in Hanauma Bay Nature Preserve (HBNP), O'ahu, Hawai'i to gain a baseline understanding of the physical processes that influence localized bleaching dynamics. Surveys at HBNP in October 2015 and January 2016 revealed extensive bleaching (47%) and high levels of coral mortality (9.8%). Bleaching was highly variable among the four HBNP sectors and ranged from a low of ∼31% in the central bay at Channel (CH) to a high of 57% in the area most frequented by visitors (Keyhole; KH). The highest levels of bleaching occurred in two sectors with different circulation patterns: KH experienced comparatively low circulation velocity and a low temperature increase while Witches Brew (WB) and Backdoors (BD) experienced higher circulation velocity and higher temperature increase. Cumulative mortality was highest at WB (5.0%) and at BD (2.9%) although WB circulation velocity is significantly higher. HBNP is minimally impacted by local factors that can lead to decline such as high fishing pressure or sedimentation although human use is high. Despite the lack of these influences, high coral mortality occurred. Visitor impacts are strikingly different in the two sectors that experienced the highest mortality evidenced by the differences in coral cover associated with visitor use however, coral mortality was similar. These results suggest that elevated temperature was more influential in coral bleaching and the associated mortality than high circulation or visitor use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...